

# **Department of Electronics and Communication Engineering**

| Course Code           | Course Name                   | L  | T | P  | C |
|-----------------------|-------------------------------|----|---|----|---|
| Value Added<br>Course | MACHINE LEARNING USING PYTHON | 20 | 0 | 25 | 2 |

#### a. Preamble

The rise of Machine Learning (ML) is revolutionizing industries by enabling systems to learn from data, uncover patterns, and make intelligent decisions. This course, *Machine Learning using Python*, is designed to equip students with the fundamental concepts, techniques, and practical skills required to develop data-driven solutions. With a strong focus on Python-based implementation, learners will gain hands-on experience in supervised, unsupervised, and reinforcement learning methods, along with essential libraries such as NumPy, Pandas, Scikit-learn, and TensorFlow. The course emphasizes practical learning through real-world datasets, projects, and case studies, preparing students to build scalable ML models that address challenges across diverse domains. By bridging theory with practice, students will be empowered to contribute to the evolving landscape of Artificial Intelligence.

#### b. Course Outcome

Upon successful completion of the course, the students will be able to

| Cos | Course Outcome                                                                                                                           | Knowledg<br>e Level |  |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--|--|--|
| CO1 | Understand the fundamental concepts of Machine Learning and its role in Artificial Intelligence.                                         |                     |  |  |  |
| CO2 | Apply Python libraries and frameworks (NumPy, Pandas, Scikitlearn, TensorFlow) for data preprocessing, model building, and evaluation.   | К3                  |  |  |  |
| CO3 | Analyze real-world datasets to identify appropriate ML algorithms and techniques                                                         | K3                  |  |  |  |
| CO4 | Develop supervised, unsupervised, and reinforcement learning models using Python.                                                        | K3                  |  |  |  |
| CO5 | Build and deploy Design and implement end-to-end ML solutions through projects and case studies relevant to industry-based applications. | К3                  |  |  |  |

## **Introduction to Machine Learning**

Introduction to Machine Learning. Scope of Machine Learning - Real-time applications of Machine Learning in various domains, Machine Learning process and workflow- Categories of Machine Learning: Supervised, Unsupervised, Reinforcement (overview) - Case studies: Supervised learning with examples, unsupervised learning with examples

## Python for Machine Learning

5 Hours

Basics of Python programming for ML-Working with data structures, functions, and file handling-Introduction to data analysis libraries: Pandas and NumPy-Data visualization using Matplotlib - Introduction to Scikit-learn (Sklearn) for ML applications

## **Supervised Learning Algorithms**

5 Hours

Decision Tree Classifier: concept, construction, and implementation—Support Vector Machine (SVM) Classifier: linear vs. non-linear, kernel tricks- Random Forest Classifier: ensemble method, bagging, and feature importance - Logistic Regression Classifier: basics, interpretation, and practical use cases - Hands-on with Python: Implementing supervised learning algorithms.

#### **Unsupervised Learning Algorithms**

5 Hours

Introduction to working with unlabeled data - Usage of unstructured data for clustering- K-Means Clustering: concept, applications, and Python implementation- optimal cluster selection - Hierarchical Clustering (overview) - Case studies and projects with real datasets.

# Applications and projects in ML

25 Hours

End-to-end Machine Learning project workflow- Model selection, evaluation, and optimization techniques- Cross-validation and hyper parameter tuning- ML applications in finance, healthcare, IoT, and recommendation systems- Ethical issues and challenges in Machine Learning- Mini-project: Designing and implementing a complete ML model using Python.

#### **SDG Mapping**

| CO's |                               | SDG Mapping                                          |                                                   |  |  |  |
|------|-------------------------------|------------------------------------------------------|---------------------------------------------------|--|--|--|
| CO1  | SDG – 04<br>Quality Education | SDG – 09 Industrial Innovation and Infrastructure    |                                                   |  |  |  |
| CO2  | SDG – 04<br>Quality Education | SDG – 09<br>Industrial Innovation and Infrastructure | SDG -15<br>Life and Land                          |  |  |  |
| CO3  | SDG – 04<br>Quality Education | SDG - 09 Industrial Innovation and Infrastructure    | SDG – 03 Good Health and Well Being               |  |  |  |
| CO4  | SDG – 04<br>Quality Education | SDG – 09 Industrial Innovation and Infrastructure    | SDG – 06 Clean Water and Sanitation               |  |  |  |
| CO5  | SDG – 04<br>Quality Education | SDG-09 Industrial Innovation and Infrastructure      | SDG – 11<br>Sustainable Cities and<br>Communities |  |  |  |

# Course outcome mapping

| Course<br>Code | CO.<br>No. | POs |   |   |   |   |   |   |   |   |     | PSOs |   |   |
|----------------|------------|-----|---|---|---|---|---|---|---|---|-----|------|---|---|
|                |            | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10  | -11  | 1 | 2 |
|                | CO1        | H   | H | Н | - | Н | - | - | - | L | -   | L    | H | H |
|                | CO2        | Н   | Н | Н | - | Н | - | - | - | L | -   | L    | Н | H |
|                | CO3        | Н   | Н | Н | - | Н | - | - | - | L | - " | L    | H | H |
|                | CO4        | Н   | Н | H | - | Н | - | - | - | L | -   | L    | H | H |
|                | CO5        | H   | H | H | - | Н | - | - | - | L | -   | L    | H | H |

H (for high), M (for moderate), L (for low) for mapping

Course Incharge

Mrs. C. Nagavani AP/ECE

Dr. K. Ragini AP/ECE

Head of the Department